

Norine E. Dobiesz James R. Bence

Overview

- Balancing predator forage demand with prey availability
- Stocking
 - Widespread since the mid-1960's
 - Major component of predator populations
 - Potential for predators to exceed forage capacity

Overview

- Review methods
- Consumption in the main basin
- Compare to primary prey abundance
- Consumption in Georgian
 Bay and the North Channel
- Projected consumption

Key predators in the open waters

Burbot (*Lota lota*)

Chinook Salmon
(Oncorhynchus tshawytscha)

Lake Trout (Salvelinus namaycush)

Walleye (Stizostedion vitreum)

Main constituents in the diet of the key predators

Alewife

(Alosa pseudoharengus)

Rainbow Smelt

(Osmerus mordax)

Others:

Bloater

Sculpin

Stickleback

Invertebrates

Estimating consumption in the main basin

Consumption = Production / GCE

- Production-conversion efficiency method
- •Year- and age-specific consumption
- •Data from stock assessment & bioenergetics models

Estimating consumption

Consumption = Production / GCE

Gross production is estimated from

- Stock assessment model
 - -age-specific population abundance
 - -mortality rates
- Weight-at-age

Accounts for consumption by fish that die during the model time step

Estimating consumption

Consumption = Production / GCE

Gross conversion efficiency (GCE)

- •Estimated from bioenergetics models
 - Wisconsin Model (version 3.0b)
 - Lake Huron specific values
 - Predicts prey consumption from observed growth

Chinook salmon and burbot model area

Lake trout areas modeled

Walleye areas modeled

Summary of age-structured stock assessment models

		Recruitment			Mortality		
Predator	Areas	Stocking	Natural	M	SL	F	MAT
Lake trout	3	X		X	X	X	
Chinook salmon	1	X	X	X		X	X
Walleye	2	X	X	X		X	
Burbot	1		X	X	X	X	

Models operate on an annual basis

Estimated chinook salmon consumption and biomass in the main basin

Mean consumption in the main basin, 1996-1998 (metric tons x 1000)

Mean consumption: 38.5

	Burbot	Chinook salmon	Lake trout	Walleye
Alewife	1.5	13.6	3.9	1.6
Rainbow smelt	1.1	5.7	3.4	0.5
Other	2.7	2.8	0.3	1.4
Alewife+smelt	2.6	19.3	7.3	2.1

Total alewife+smelt: 31.3

"Back of envelope" consumption in Georgian Bay (GB) and North Channel (NC) vs. main basin (MB)

		tion (1000)	
Predator	GB	NC	MB (1996-1998
Chinook salmon	1.8	3.9	22.1
Lake trout	2.2	5.9	7.6
Double-crested cormorants*	1.4	2.1	0.7

^{*} McLeish, D.A. 1996

Projected effects of current stocking practices on consumption in the main basin

Effects of projected reduction in sea lamprey abundance on consumption in the main basin

Effects of projected reduction in sea lamprey abundance and 50% reduction in chinook salmon stocking on consumption in the main basin

Summary

- Major consumers: lake trout & chinook salmon
- Consumption by key predators may be approaching prey capacity
- Changes in stocking and sea lamprey abundance effect consumption
- Importance of continued monitoring of predators and prey